An Intermittent Live Cell Imaging Screen for siRNA Enhancers and Suppressors of a Kinesin-5 Inhibitor
نویسندگان
چکیده
Kinesin-5 (also known as Eg5, KSP and Kif11) is required for assembly of a bipolar mitotic spindle. Small molecule inhibitors of Kinesin-5, developed as potential anti-cancer drugs, arrest cell in mitosis and promote apoptosis of cancer cells. We performed a genome-wide siRNA screen for enhancers and suppressors of a Kinesin-5 inhibitor in human cells to elucidate cellular responses, and thus identify factors that might predict drug sensitivity in cancers. Because the drug's actions play out over several days, we developed an intermittent imaging screen. Live HeLa cells expressing GFP-tagged histone H2B were imaged at 0, 24 and 48 hours after drug addition, and images were analyzed using open-source software that incorporates machine learning. This screen effectively identified siRNAs that caused increased mitotic arrest at low drug concentrations (enhancers), and vice versa (suppressors), and we report siRNAs that caused both effects. We then classified the effect of siRNAs for 15 genes where 3 or 4 out of 4 siRNA oligos tested were suppressors as assessed by time lapse imaging, and by testing for suppression of mitotic arrest in taxol and nocodazole. This identified 4 phenotypic classes of drug suppressors, which included known and novel genes. Our methodology should be applicable to other screens, and the suppressor and enhancer genes we identified may open new lines of research into mitosis and checkpoint biology.
منابع مشابه
Downregulation of Kinesin Spindle Protein Inhibits Proliferation, Induces Apoptosis and Increases Chemosensitivity in Hepatocellular Carcinoma Cells
Background: Kinesin spindle protein (KSP) plays a critical role in mitosis. Inhibition of KSP function leads to cell cycle arrest at mitosis and ultimately to cell death. The aim of this study was to suppress KSP expression by specific small-interfering RNA (siRNA) in Hep3B cells and evaluate its anti-tumor activity. Methods: Three siRNA targeting KSP (KSP-siRNA #1-3) and one mismatched-siRNA (...
متن کاملIdentification of siRNA delivery enhancers by a chemical library screen
Most delivery systems for small interfering RNA therapeutics depend on endocytosis and release from endo-lysosomal compartments. One approach to improve delivery is to identify small molecules enhancing these steps. It is unclear to what extent such enhancers can be universally applied to different delivery systems and cell types. Here, we performed a compound library screen on two well-establi...
متن کاملThe Aspergillus nidulans bimC4 mutation provides an excellent tool for identification of kinesin-14 inhibitors.
Centrosome amplification is a hallmark of many types of cancer cells, and clustering of multiple centrosomes is critical for cancer cell survival and proliferation. Human kinesin-14 HSET/KFIC1 is essential for centrosome clustering, and its inhibition leads to the specific killing of cancer cells with extra centrosomes. Since kinesin-14 motor domains are conserved evolutionarily, we conceived a...
متن کاملmitoODE: Dynamical modelling of phenotypes in a genome-wide RNAi live-cell imaging assay
The Mitocheck assay is a genome-wide time-lapse imaging screen that employed small-interfering RNAs (siRNAs) to test the implication of human genes in transient biological processes such as cell division or migration [2]. siRNAs are double-stranded RNA molecules, implicated in the RNA interference pathway, that are used to disrupt the expression of specific genes. The screen consisted of 206592...
متن کاملA screen for genes that function downstream of Ras1 during Drosophila eye development.
Cell-fate specification of the R7 photoreceptor cell is controlled by the sevenless receptor tyrosine kinase (SevRTK) and Ras1, the Drosophila homologue of mammalian H-ras, K-ras and N-ras oncogenes. An activated form of Ras1 expressed under control of the sevenless enhancer/promoter (sev-Ras1V12) induces production of supernumerary R7 photoreceptor cells, which causes the eye to become rough i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2009